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Abstract. We present results of pseudopotential calculations for the high-pressure phases of
indium antimonide, showing that the recently observed Cmcm superlattice structure is the most
stable crystal structure at high pressure. Furthermore, we show that the competing high-pressure
phases observed in this and other III-V semiconductors can be characterized into a hierarchy by
ordering and topology and that symmetry is a secondary characteristic in determining the energy.

1. Introduction

There has been a huge upsurge in interest in the high-pressure structure of the tetrahedral
semiconductors recently, due to the development of two new techniques: diamond anvil
cells allied to the image plate x-ray detector and the pseudopotential implementation of the
density functional theory combined with the availability of fast computers [1]. Spectacular
agreement has been observed between the two methods, with experimental results showing
small distortions from the simple structures which had been suggested by early workers, and
calculation now able to determine which observed phases are stable and which metastable—and
also to predict stable phases which might not have been observed due to transition kinetics.

By virtue of its series of phase transitions, and exceptionally sharp high-pressure
diffraction patterns, indium antimonide has been among the most heavily studied materials.
InSb has the zinc-blende structure at ambient pressure, but the detailed high-pressure
systematics were only revealed in 1993 with image plate analysis [2] and extremely careful
x-ray diffraction study, uncovering one of the most complicated high-pressure crystal structures
yet solved, a 12-atom unit cell named the super-Cmcm phase to distinguish it from the simpler
structure with the same symmetry found in GaAs [3].

The InSb equilibrium phase diagram is summarized in figure 1 following the notation
of the recent comprehensive review by Nelmes and McMahon [1]. The experimental work is
complicated by the appearance of metastable intermediate phases and the observed sequence of
phases under increasing pressure at room temperature is as follows: the zinc-blende structure
transforms to a mixture of disordered 8-tin and I/ mmm before transforming to a single phase of
I'mmm. This phase then goes through a transition to the super-Cmcm structure. Work at higher
pressure by Nelmes and McMahon has shown that the super-Cmcm structure transformed back
to Immm at pressures above 10 GPa via an intermediate structure that they called P57. The
behaviour of the Immm phase at room temperature is particularly strange, appearing both as
a metastable intermediary at low pressure and as a truly stable phase at higher pressure.

T The PS5 (phase 5) notation simply indicates that the space group has yet to be fully characterized. Other (solved)
phases are P1 (zinc-blende), P2 (B-tin), P3 (Immm), P4 (super-Cmcm).
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Figure 1. A schematic representation of the equilibrium temperature—pressure phase diagram of
InSb from x-ray diffraction and the present calculations [1,26]. Zinc-blende is the cubic zinc-blende
structure. Super-Cmcm and Immm are decorations of the simple hexagonal lattice described in
the text. The experimental work [26] suggests a re-entrant behaviour of the /mmm phase but
we can find no theoretical evidence for this. The figure omits the S-tin phase, the low-pressure
Immm phase and the high-pressure P5 phase which are predicted in this paper to be metastable.
Temperatures given in the figure are intended as illustrative only and do not represent theoretical
predictions.

Ateven higher pressures [5] (~17 GPa) Immm again becomes unstable to an intermediate
structure which ultimately transforms to a BCC phase. These structures will not be considered
here and consequently are not shown in figure 1.

The naming of the phases can give rise to confusion. This is because the experimentally
reported structures are actually the highest-symmetry phases consistent with the data: there
is always the possibility that the weak diffraction peaks due to small symmetry-breaking
distortions or medium-range ordering cannot be resolved. With improvements in experimental
technique better resolution has led to the reporting of phases of ever lower symmetry, and now
the ability to determine the absence of weak peaks gives confidence that the true space group
has been determined.

Here, we group the Immm, Cmcm and super-Cmcm phases together as ‘simple hex-
agonal analogues’. This is appropriate because these are the symmetries which arise from
simple binary ordering on a simple hexagonal lattice. Likewise, we will consider different
ordering on an underlying S-tin lattice, and associated symmetry breaking.

In this paper we address a number of issues regarding the InSb phase diagram based on
total-energy calculations of the observed structures and others which could be expected to be
competitive based on their existence in other tetrahedral semiconductors. Using these results
we also address the observation of disordered phases at room temperature and the appearance
of metastable intermediates. The paper is arranged as follows. In section 2 we discuss the
possible crystal structures which we will be considering, then in section 3 the total-energy
calculations are presented. Since these calculations are at zero kelvin, models for the high-
temperature behaviour are introduced in sections 4 and 5 to cover both order—disorder and
soft-phonon-type temperature-induced transitions. Finally we draw conclusions and present a
theoretical interpretation of the (meta)stability of the observed phases.



Computational analysis of the high-pressure structures of InSb 7163
2. General structural considerations

The high-pressure phases in binary III-V semiconductors [1] can generally be related to those of
silicon: diamond, B-tint, simple hexagonal and the metastable distorted fourfold-coordinated
BC8 structure. Other phases observed experimentally, such as cinnabar [6], have been shown
to be metastable [3]. Forming a binary equivalent of these covalent structures is straightforward
when one recognizes that most compounds have secondary ionic bonding, which favours unlike
nearest-neighbour atoms. Thus the zinc-blende, SC16 and rock-salt¥ structures have a unique
ordering making all nearest neighbours unlike, and all have been observed at high pressure in
III-V compounds. By contrast, structures with odd-membered rings, for which such orderings
are impossible, such as Si-XII (R8) [7], have high energy [8] and are not observed. For InSb
previous calculations have demonstrated the relative stability of these phases, showing that
neither SC16, rock-salt nor any ordering of R8 is stable [4,9]. These structures are described
in a number of recent reviews [1,4].

In this section we consider possible binary decorations of the simple hexagonal and
B-tin structures based on the premise that the energy is determined by the number of unlike
neighbours.

2.1. Simple hexagonal analogues

For the simple hexagonal structure, it is impossible for all six neighbours of every atom in
the close-packed layer to be of the opposite species. The most unlike neighbours that can be
achieved in a periodically repeating structure is four, and there are infinitely many ways of
achieving this. The three experimentally observed patterns, Immm, Cmcm and super-Cmcm,
are shown in figures 2(a), 2(b), 2(c): the perpendicular continuation of the hexagonal layers is
a columnar alternation of black and white atoms§.

It is actually possible to obtain more than four unlike neighbours per atom in an aperiodic
structure, as shown in figure 2(d). The special axis here might be viewed as a nucleation site
for ordering from the disordered phase, but forming boundaries between domains of this type
would at best return the mean number of unlike neighbours to four||.

As shown in figure 3 it is possible to maintain hexagonal symmetry with a maximal-unlike-
neighbour decoration of the hexagonal lattice, although there is no experimental evidence for
its existence€.

Of the three structures which have been observed experimentally, the simplest is Immm
which has alternate parallel stripes, then the zigzag structure of the Cmcm and finally the
larger zigzags of the super-Cmcm. Ignoring small distortions from the simple hexagonal sites,
and considering the structures in terms of bonding hierarchy, there is no obvious difference
in packing efficiency or covalent bonding (each has eight neighbours). Ionic bonding gives
very similar Madelung constants for each structure (dominated by the six unlike neighbours).
Thus there is likely to be a delicate balance of energies between these structures: indeed it has
been established from ab initio calculation in GaAs that more subtle electronic effects lead to

T Strictly, the crystal structure originally identified as the 8-tin phase in silicon is slightly orthorhombically distorted
to Imma, the monatomic equivalent of 7mm?2.

i These are the binary analogues of the diamond, BC8 and simple cubic structures.

§ Although we think of these structures as based on the simple hexagonal lattice, they do not actually have simple
hexagonal symmetry.

|| If this is the most favoured atomistic nucleation site, since it gives rise to an aperiodic structure, it is likely that the
ordering process will be slow.

9 To generate such a hexagonal structure based on preferred nucleation sites rather than overall stability would require
that the ordering nuclei were distributed on a superlattice.
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Figure 2. Possible decorations of a simple hexagonal lattice giving rise to (a) Immm, (b) Cmcm
and (c) super-Cmcm structures (atom types alternate in subsequent layers), and (d) a non-periodic
structure which has more than four unlike neighbours.
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Figure 3. Hexagonal decoration of a hexagonal lattice showing the possibility of atoms with six
unlike near neighbours forming part of a crystalline structure
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Cmcm having lower energy [3].

It is notable that the breaking of simple hexagonal symmetry by these structures is fully
determined by the location of the atoms on the sites of the hexagonal lattice. Although in the
experimentally reported structures the atoms are slightly displaced from ideal hexagonal sites,
these displacements do not break any further symmetry. For this reason we categorize them
as hexagonal decorations rather than as stackings of NaCl planes [1].

2.2. B-tin analogues

The binary equivalent of the B-tin structure is straightforward if one considers it to be a
fourfold-coordinated structure (the bonding topology and the anion/cation ordering are then
identical to those of zinc-blende). However, the pair of neighbouring atoms along the c-axis
are very close to being near neighbours. If one treats B-tin as sixfold coordinated then there
are five-membered rings and no unique structure which maximizes the number of unlike near
neighbours. Furthermore, the ‘zinc-blende’ ordering is then not even one of the structures
which maximizes the number of unlike near neighbours.

No ordered B-tin-like phase has been reported experimentally [10].

Atsome pressures, the S-tin structure of silicon is unstable with respect to a small distortion
to /mma. The equivalent distortion in a binary compound would give rise to the / mm?2 structure
(figure 4). This structure can be regarded as a small distortion from either B-tin or Immm. It
has been suggested as a possible stable phase of InSb [11], and although the experimental data
at room temperature rule it out, it is conceivable that it could exist at low temperatures.
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Figure 4. A projection drawing of the body-centred orthorhombic /mm?2 structure viewed down
the c-axis. Grey and white circles represent atoms of different species. Special cases of this include
Immm (u = 0.5), NaCl (u = 0.5anda = c = b/ﬁ), B-tin (a = b, u = 0.25) and zinc-blende
(@a=b=+2c,u=025).

3. Zero-temperature ab initio simulations

A number of previous papers have described ab initio total-energy calculations using the
density functional [12, 13] plane-wave pseudopotential method [14] for III-V materials at
pressure [3,9, 15-18]. Here we report the results of similar calculations for InSb.

We have calculated total energies for the following structures: zinc-blende, ordered B-tin,
a model for disordered B-tin, Immm, Imm?2, SC16, rock-salt, Cmcm and the super-Cmcm
phase (see figures 2—4). For all the structures considered all degrees of freedom were relaxed
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(electrons, ionic coordinates and the shape and size of the cell).

The plane-wave expansion was truncated at terms with a kinetic energy of 300 eV. This
was found to converge the total energies to better than 0.1 meV per atom. The reciprocal-space
sampling was performed using the symmetry-reduced sets of Monkhorst and Pack [19]. The
sets used were as follows. The semiconducting zinc-blende phase was sampled witha 6 x 6 x 6
set. The metallic inversion domain boundary (IDB) structure, described in section 5 below, the
B-tin phase, the Imm2 phase and the Immm phase used 10 x 10 x 8, 10 x 10 x 14, 12 x 12 x 20
and 10 x 10 x 16 sets respectively. For the rock-salt phase an 11 x 11 x 11 set was found
to be sufficient to converge the total energy to better than 0.1 meV per atom. The numbers of
special k-points used was then 300 for the /mm?2 phase, 200 for the I mmm phase, 296 for the
B-tin phase and 100 for the IDB structure. The semimetallic SC16 phase and the super-Cmcm
phase both only required a 4 x 4 x 4 grid to give a similar level of k-point convergence at
5 meV per atom. Previous work has shown that including the 4d states either explicitly [11]
or via non-linear core corrections [16] can be important: we use the ultrasoft-pseudopotential
scheme [20] and include the 4d states as valence electrons in our calculations.

In each case the internal and lattice parameters were optimized by evaluation of ab initio
stresses and Hellmann—Feynman forces: the atoms were moved until the forces fell to zero
and the lattice parameters altered until the residual stresses were hydrostatic [21]. The results
of these calculations are given in figure 5.

For the three ‘simple hexagonal’ structures, even this level of convergence was insufficient
to convincingly distinguish their energies [8]. Consequently we adopted a different strategy to
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Figure 5. Energy versus volume for all the InSb phases considered. Curves are fits to about 20 data
points using the Birch-Murnaghan equation of state. The zero of energy was taken as the isolated
atoms. The solid line represents super-Cmcm, the dotted line B-tin, the short-dashed line /mmm,
the long-dashed line Cmcm and the dot—dashed line zinc-blende. The phase transition from zinc-
blende to super-Cmcm is determined from the common-tangent construction to be 2.3 GPa, in
excellent agreement with the 2.1 GPa reported experimentally.
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examine directly the energy differences between the three phases. An equivalent monoclinic
supercell was used to describe each pair of phases: 12 atoms for super-Cmcm versus Cmcm,
4 atoms for Cmcm versus Immm. Direct comparison of super-Cmcm with Immm in an
equivalent cell would require 24 atoms and was not done. Identical k-point sets (4 x 4 x 4 and
10 x 10 x 8) were employed for each which gives rise to cancellation of sampling errors and
means energy differences are better converged.

The energy comparison between the three ‘simple hexagonal’ structures is shown in
figure 6. The most complex structure, the super-Cmcm, can be seen to have very slightly
the lowest energy. Curiously, it also has the largest equilibrium volume, and (marginally)
the largest volume at each pressure. This is consistent with the experimental observation
that the super-Cmcm which appears on recrystallization is slightly less dense than the

intermediate Immm.
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Figure 6. Energy relative to the super-Cmcm structure versus volume using k-point matching
for the hexagonal decorated InSb phases considered and for the ordered B-tin phase. The dotted
line represents S-tin, the short-dashed line /mmm and the long-dashed line Cmcm. The lines are
differences between fits to about 20 data points using the Birch-Murnaghan equation of state. We
have no explanation for oscillations in the curves which may be due to noise. Notice the extremely

small scale of the y-axis.

The results suggest a 0 K pressure-induced transition from zinc-blende to super-Cmcm at
2.4 GPa, in good agreement with experiment. They also imply a transition from super-Cmcm
to Immm at 26 GPa, qualitatively correct but above the observed room temperature value. This
may arise from the strong temperature dependence of this transition pressure [1] illustrated in

figure 1.

The B-tin structure was also evaluated and found to be very close in energy to the simple

hexagonal structures, but never stable.
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These lattice parameters and internal parameters for all the phases calculated agree well
with the experimental observations, and their values at 6 GPa are quoted in table 1 and compared
with experimental data.

Table 1. Relaxed parameters for the InSb phases studied, taken from 6 GPa calculations.
Experimentally measured values from Nelmes and McMahon [25] are given in brackets for
comparison. With the exception of the volume, the parameters chosen for this table vary slowly
with pressure.

Structure Volume (A%) ¢/a b/a In parameters Sb parameters
Zinc-blende 1 1 — —

B-tin 51.39 0.5404 (0.5448) 1 — —

Immm 51.40 0.538 (0.544)  0.907 (0.921) — —

Cmcem 51.27 1.0482 0.929 y = 0.7260 y =0.2154
Super-Cmcm  51.42 2.838 (2.872) 1.031 (1.050) 4(c): y =0.110 (0.120) y = 0.606 (0.620)
Super-Cmcm 8(f): y =0.413 (0.411) 8(f): y =0.915(0.910)
Super-Cmcm 8(f): z=10.085(0.089) 8(f): z =0.079 (0.081)

4. Soft modes in 3-tin, Immm and I'mm?2

Previous experimental [2] and theoretical work [11] has suggested the possibility that the
Immm phase might in fact have /mm2 symmetry. Imm?2 can be related to /mmm and
B-tin by a soft-phonon distortion, coupled to a lattice shear [1], as shown in figure 4. We
have performed calculations along this pathway under two separate assumptions regarding
boundary conditions.

Figure 7 shows the results of the calculations of the variation in enthalpy under constant
pressure with fixed u relative to /mmm. These calculations reveal structural stability under
hydrostatic conditions. Consistent with figure 6, the 8-tin phase is favoured at low pressures and
the Immm at high pressure. Both structures lie at minima of the enthalpy and are metastable;
however, there is no region of /mm?2 metastability.

Figure 8 shows the results of the calculations of the variation in energy under constant
volume with a range of unrelaxed u; the lattice parameters are taken from the /mmm or B-tin
structures. These ‘frozen-phonon’ calculations represent the structures accessible to vibrations
of the I'-point optic phonon. The metastability of the /mmm structure is again clear, as is the
fact that coupling of the internal coordinate to the strain is needed to transform to S-tin.

In the B-tin phonon calculation (dashed line), the © = 0 structure can be regarded as a
barrier between one B-tin structure and an equivalent. At 6 GPa this barrier is only 0.026 eV
per atom, making it possible that the columns of like-species atoms could slide relative to one
another along the c-axis, assisting rapid atomic diffusion. This may contribute to the broad
diffraction peaks reported for the S-tin structure.

Energy comparisons between Imm?2, Immm and B-tin at zero temperature and low
hydrostatic pressure show that B-tin is more stable, but the energies of all three are very
close. At high pressure Immm becomes more stable. We find no evidence for the stability
of Imm?2 under hydrostatic conditionsf: although the energy associated with the soft-mode

T As far as we can determine, /mm?2 is not even metastable since the energy increases as u is varied from 0.5 (see
figure 4) even if the lattice parameters are allowed to relax. For small deviations from 0.5 the restoring forces in /mm?2
are below the convergence criteria adopted in other calculations. Unlike /mmm, Cmcm etc the Imm?2 structure does
involve more symmetry breaking from simple hexagonal than is entailed by ordering of the anions and cations.
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Figure 8. Relative energy versus internal parameter u for I'-point ‘frozen’-phonon calculations
for S-tin (dashed line) and /mmm (solid line). The unit cells correspond to the 6 GPa equilibrium
structures.

distortion (which corresponds to a low-frequency I'-point mode in /mmm) is small, it never
becomes negative. If a non-hydrostatic pressuret is applied, either of the Immm and Imm?2
structures can be stabilized. This is consistent with previous work which found zero energy

1 Computationally, this means the external stress o, along the b-direction is set different to that along the a-direction.
The total energy plus (oxxa + 0yyb + 0;;¢) is then minimized with respect to the internal degrees of freedom and the
lattice parameters. Previous workers [11] were unable to relax all degrees of freedom simultaneously and hence could
not determine the correct hydrostatic structure.
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difference (to within calculational accuracy) between Imm?2 and Immm [11] in calculations
for which the stress was not hydrostatic.

Since Imm?2 is the lower-symmetry phase (in a Landau picture) its calculated mechanical
instability implies thermodynamic instability at all temperatures.

Note that the /mmm and B-tin phases are both metastable with respect to super-Cmcm.

5. Site disorder in 3-tin

Disorder in InSb was previously investigated with respect to formation of inversion domain
boundaries (IDB) as an explanation for the lack of difference peaks for depressurized zinc-
blende and Immm. The diffraction pattern of the S-tin phase differs in character from that of
the other phases of InSb in that the diffraction peaks are broader and the strongest ‘difference’
peak (from In—Sb out-of-phase scattering) is absent [1]. The traditional interpretation of this
absence is that the phase is disordered. However, both these effects (peak broadening and
the lack of the difference peak) can be explained by the presence of IDBs. An IDB does not
disrupt the arrangement of sites but swaps the atomic speciesf. In previous work the (110)
IDB in zinc-blende InSb was found to have an energy of 0.285 eV per pair of like-species near
neighbours (‘wrong bond”) [18].

We have performed a similar calculation on a cell which comprises a reordering of the
atoms on the B-tin lattice increasing the number of unlike second neighbours along the c-
direction at the cost of creating like-neighbour pairs. With respect to ‘zinc-blende-ordered’
B-tin (figure 4) it can be regarded as an IDB every fourth layer. It is also one of the structures
which maximizes the number of first + second unlike neighbours.

By taking the difference between the total energies of the IDB structure and the S-tin
phase, the energy per wrong bond can be calculated for the B-tin phase. This turns out to be
0.004 eV, significantly lower than the energy of a wrong bond in the zinc-blende phase. It is
also worth noting that the energy of the wrong bond drops significantly between the relaxed
and unrelaxed structures showing that, as in the zinc-blende case [18], ionic and cell relaxation
are important in obtaining accurate energetics—however, in the real material full relaxation
may not be possible, so our wrong-bond energy represents a lower bound.

6. Discussion

In much previous work comparing total-energy calculations with high-pressure experiment the
effect of temperature has been ignored. The excellent results obtained suggest that the free-
energy differences arising from effects such as zero-point motion and phonons seem to have
little effect in determining stability at room temperature. The calculations here suggest two
transitions between stable structures: zinc-blende — super-Cmcm — Immm. This appears
to be at variance with the experimentally reported B-tin and Immm.

A clue to the resolution of this comes from the diffraction patterns themselves: those of
B-tin and Immm are broader than those of zinc-blende or super-Cmcm, indicating that the
crystals are either small or contain many defects. Both calculation and experiment agree that
the super-Cmcm phase is less dense at a given pressure than the B-tin and /mmm. This is
thermodynamically inconsistent with the transition from I mmm to super-Cmcm on increasing
pressure. A more likely interpretation is that super-Cmcm is the stable phase, while the initial
appearance of Immm is merely a metastable structure.

T The two domains on either side of the IDB scatter coherently, but the contributions from each to the difference
peaks are out of phase leading to a much reduced amplitude.
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Using the wrong-bond energy it is possible to estimate the thermodynamic order—disorder
temperature of B-tin InSb. Long-range order is destroyed when the number of wrong bonds
exceeds the percolation threshold, which in this case is the same as for diamond—39% of
bonds [18]. Assuming that in a general configuration relaxation is more difficult, we take the
unrelaxed wrong-bond energy deduced from the IDB structure to obtain an energy difference
of 0.008 eV/atom between ordered and disordered S-tin. This implies an order—disorder
temperature well below room temperature: in the case of InSb using the simple theory of
Bethe [22] gives an order—disorder transition at around 40 K. This explains the fact that
observations of the S-tin phase in InSb (and III-V phases in general [10]) have always shown
it to be disordered.

In the simple hexagonal-type structures wrong bonds in the c-direction are energetically
very unfavoured. Thus disorder can occur only in the hexagonal plane. One can describe
the experimentally reported periodic orderings as involving stripes with kinks: 7mmm has no
kinks, Cmcm has kinks on every row and super-Cmcm a kink in every third row (see figure 2).

A further possibility is that the stripes have randomly ordered kinks. Such a structure
would be orthorhombic, Immm, with the mean direction of the stripes determining a unique
axis and may be a candidate for the intermediate /mmm phaset. With time, this structure will
anneal out to the most stable structure, which in the case of InSb is super-Cmcm. Note that
although the energy differences between decorations are very small, the kinks only provide
disorder in one dimension, and hence cannot contribute enough entropy to drive a temperature-
driven order—disorder transition in the thermodynamic limit.

In the first phase transition it is likely that the disordered-kink structure could form quite
rapidly, with the super-Cmcm decoration of the close-packed plane evolving more slowly.
This is consistent with the room temperature diffraction data, which initially show a metastable
Immm phase with broad peaks. This is followed by a growth of super-Cmcm with very sharp
peaks, showing that the defects anneal out.

At high pressures, the larger volume of super-Cmcm makes it less stable than the ordered
Immm phase, so the nature of this transition is uncontroversial.

7. Conclusions

The sequence of observed phase transitions in InSb can be easily understood by comparison
with silicon. The predominant bonding in each case is covalent, and the covalent frameworks
of the observed structures are identical. In silicon the first three stable phases are diamond,
B-tin (slightly distorted to Imma at 0 K or higher pressure) and simple hexagonal. In InSb the
first four observed structures are simply binary equivalents of the silicon ones: zinc-blende,
B-tin, Immm and super-Cmcm.

In InSb, unlike almost all the other III-V semiconductors [15-17], the SC16 phase is not
predicted to be stable at any pressures. The theoretical sequence of low-temperature stable
structures is simply zinc-blende to super-Cmcm to Immm.

The complex and apparently diverse structural systematics in III-V semiconductors can be
related to the absence of a unique binary simple hexagonal structure which maximizes numbers

F The ‘disorder’ proposed here is the one-dimensional ordering of the kinks in figure 2. If the lines of similar atoms
do not form closed loops, there will be mirror planes parallel and perpendicular to the mean stripe direction and perfect
order in the c-direction, giving overall /mmm symmetry. The disordering will give rise to broad diffraction peaks and
the diffraction pattern from such a phase will appear to have /mmm symmetry. The ordering in planes perpendicular
to the unique axis, combined with the ordering in the c-direction, underlies the alternate description of these phases
in terms of NaCl layers.

% For N atoms the kink configurational entropy increases as N'/° while the energy difference increases as N. It is
possible that for small crystallites /mmm will be stabilized over super-Cmcm by such finite-size effects.

1/3
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of unlike nearest neighbours. The observed structures, Immm, Cmcm and super-Cmcm,
all have symmetries corresponding exactly to different decorations of the simple hexagonal
structure, and although the observed atomic positions are slightly displaced from the simple
hexagonal lattice, these displacements do not in any case entail any symmetry breaking beyond
that introduced by the ordering of the cations and anions. In all these structures the differences
in order are confined to the hexagonal plane: hence a disordered combination of them will
not have an extensive entropy. To disorder a simple hexagonal structure three dimensionally
requires an increase in the number of unlike nearest-neighbour bonds.

The non-unique ordering of the B-tin structure, with the possibility of compensating for
like-species near neighbours with unlike second neighbours, leads to a very low order—disorder
transition temperature. Moreover, it is conceivable that a disordered S-tin phase, with higher
configurational entropy than /mmm, could have a region of stability at high pressure and
temperature.

The internal coordinates and lattice parameters of the super-Cmcm phase reported in InSb
are very well reproduced in the calculation, and it is found to be the energetically favourable
decoration of a hexagonal lattice over the simpler Cmcm and Immm. At a given pressure,
super-Cmcm has a larger atomic volume than /mmm and hence I mmm has the lower enthalpy
at high pressures.

There are a number of additional interesting features of the super-Cmcm phase. It does
not appear immediately on pressure increase, but rather after the sample is left for some time.
Its growth can be accelerated by annealing even though higher temperatures take it toward the
edge of its stability field, and by increased pressure even though it has a slightly larger volume
than Immm. Finally, the diffraction pattern observed on an area detector is not a smooth
ring, but has a ‘spotty’ appearance [2]. All this is evidence of large crystallite sizes arising
from slow recrystallization kinetics, consistent with our calculated result that many competing
metastable phases with very similar energy exist.

In sum, the results of our calculations and analysis reveal a theoretical interpretation
fully consistent with the experimental pressure and temperature phase diagram. Moreover,
the appearance of intermediary phases and order—disorder thermal transitions can be readily
understood in the context of the existence of many competing structures with very similar
energy. The interpretation of each observed phase is summarized in table 2.

Table 2. Theoretical interpretation of the stability of observed phases at room temperature, tabulated
in order of appearance experimentally on increasing pressure.

Observed phase

(increasing pressure) Theoretical interpretation

Zinc-blende Thermodynamically stable

B-tin 3D disordered, metastable to super-Cmcm, appears due to kinetics
Immm 1D disordered kinks, metastable to super-Cmcm, appears due to kinetics
Super-Cmcm Thermodynamically stable

Immm Thermodynamically stable
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